#588
Dijkstra
Se dă un graf orientat ponderat – în care fiecare arc are asociat un cost, număr natural strict pozitiv, și un nod p
. Să se determine, folosind algoritmul lui Dijkstra, costul minim al drumului de la p
la fiecare nod al grafului.
Problema | Dijkstra | Operații I/O |
![]() dijkstra.in /dijkstra.out
|
---|---|---|---|
Limita timp | 0.1 secunde | Limita memorie |
Total: 64 MB
/
Stivă 8 MB
|
Id soluție | #57286587 | Utilizator | |
Fișier | dijkstra.cpp | Dimensiune | 610 B |
Data încărcării | 24 Martie 2025, 13:11 | Scor / rezultat | Eroare de compilare |
dijkstra.cpp: In function 'void Dijkstra(int)': dijkstra.cpp:5:19: error: 'n' was not declared in this scope for (i = 1; i <= n; i++) ^ dijkstra.cpp:6:4: error: 'd' was not declared in this scope { d[i] = a[ni][i]; ^ dijkstra.cpp:6:11: error: 'a' was not declared in this scope { d[i] = a[ni][i]; ^ dijkstra.cpp:8:13: error: 'INFINIT' was not declared in this scope if (d[i] < INFINIT) ^ dijkstra.cpp:9:2: error: 't' was not declared in this scope t[i] = ni; ^ dijkstra.cpp:12:2: error: 't' was not declared in this scope t[i] = 0; ^ dijkstra.cpp:13:2: error: 'v' was not declared in this scope v[i] = 0; ^ dijkstra.cpp:15:2: error: 'v' was not declared in this scope v[ni] = 1; ^ dijkstra.cpp:16:2: error: 'd' was not declared in this scope d[ni] = 0; ^ dijkstra.cpp:19:10: error: 'INFINIT' was not declared in this scope { min = INFINIT; ^ dijkstra.cpp:23:19: error: 'n' was not declared in this scope for (i = 1; i <= n; i++) ^ dijkstra.cpp:36:19: error: 'n' was not declared in this scope for (i = 1; i <= n; i++) ^ dijkstra.cpp:37:17: error: 'a' was not declared in this scope { if (!v[i] && a[pmin][i] < INFINIT && d[i] ^ dijkstra.cpp:40:2: error: 't' was not declared in this scope t[i] = pmin; ^
www.pbinfo.ro permite evaluarea a două tipuri de probleme:
Problema Dijkstra face parte din prima categorie. Soluția propusă de tine va fi evaluată astfel:
Suma punctajelor acordate pe testele utilizate pentru verificare este 100. Astfel, soluția ta poate obține cel mult 100 de puncte, caz în care se poate considera corectă.